Sesi Ke |
KAD |
Bahan Kajian |
Metoda Pembelajaran |
Waktu Belajar (Menit) |
Pengalaman Belajar Mahasiswa |
Referensi |
Kriteria Penilaian (Indikator) |
1 |
|
Decision Making, Business Analytics Defined, A Categorization Of Analytical Methods And Models, Big Data, Business Analytics In Practice (ch01)
|
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
- Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann(2021)
|
- Ujian Tengah Semester - 2.00 %
|
|
CAPAIAN PEMBELAJARAN: Mampu memahami, menganalisis, menilai konsep dasar dan peran sistem informasi dalam mengelola data yaitu pemfilteran, agregasi dan pengorganisasian dalam analisis dan visualisasi data untuk memberikan rekomendasi pengambilan keputusan pada proses dan sistem organisasi. (CPL01 (KK.a)) Able to understand, analyze, and evaluate the basic concepts and role of information systems in managing data, including filtering, aggregation, and organization in data analysis and visualization, to provide decision-making recommendations in organizational processes and systems. (CPL01 (KK.a))
|
CPMK: Analisis dan Visualisasi Data Data Analysis and Visualization |
KAD: Mampu menganalisis bisnis Able to analyze business (4,4) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Kinerja bisnis dapat dianalis Business performance can be analyzed |
Ujian Tengah Semester 2.00 %
|
|
|
|
|
2 |
|
Spreadsheet Models,Building Good Spreadsheet Models,What-If Analysis, Some Useful Excel Functions For Modeling, Auditing Spreadsheet Models, Predictive And Prescriptive Spreadsheet Models (ch10) |
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Tengah Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Mampu merancang dan menggunakan database, serta mengolah dan menganalisa data dengan alat dan teknik pengolahan data. (CPL02 (KK.b)) Able to design and use databases, as well as process and analyze data using data processing tools and techniques. (CPL02 (KK.b))
|
CPMK: Teknik Olahan Data Data Processing Techniques |
KAD: Mampu menerapkan tools olahan data Able to apply data processing tools (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Tools yang digunakan dapat menghasilkan output The tools used can produce output |
Ujian Tengah Semester 3.00 %
|
|
|
|
|
3 |
|
Monte Carlo Simulation, Risk Analysis For Sanotronics Llc, Simulation Modeling For Land Shark Inc., Simulation With Dependent Random Variables, Simulation Considerations (ch11) |
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Tengah Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Mampu memahami, menganalisis, menilai konsep dasar dan peran sistem informasi dalam mengelola data yaitu pemfilteran, agregasi dan pengorganisasian dalam analisis dan visualisasi data untuk memberikan rekomendasi pengambilan keputusan pada proses dan sistem organisasi. (CPL01 (KK.a)) Able to understand, analyze, and evaluate the basic concepts and role of information systems in managing data, including filtering, aggregation, and organization in data analysis and visualization, to provide decision-making recommendations in organizational processes and systems. (CPL01 (KK.a))
|
CPMK: Analisis dan Visualisasi Data Data Analysis and Visualization |
KAD: Mampu mensimulasikan Analisis Keputusan Able to simulate Decision Analysis (4,4) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Simulasi Analisis Keputusan dapat berjalan Decision Analysis Simulation can work |
Ujian Tengah Semester 3.00 %
|
|
|
|
|
4 |
|
Decision Analysis, Problem Formulation, Decision Analysis Without Probabilities, Decision Analysis With Probabilities, Decision Analysis With Sample Information, Computing Branch Probabilities With Bayes, Utility Theory (ch15) |
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Tengah Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Mampu memahami, menganalisis, menilai konsep dasar dan peran sistem informasi dalam mengelola data yaitu pemfilteran, agregasi dan pengorganisasian dalam analisis dan visualisasi data untuk memberikan rekomendasi pengambilan keputusan pada proses dan sistem organisasi. (CPL01 (KK.a)) Able to understand, analyze, and evaluate the basic concepts and role of information systems in managing data, including filtering, aggregation, and organization in data analysis and visualization, to provide decision-making recommendations in organizational processes and systems. (CPL01 (KK.a))
|
CPMK: Analisis dan Visualisasi Data Data Analysis and Visualization |
KAD: Mampu mensimulasikan Analisis Keputusan Able to simulate Decision Analysis (4,4) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Simulasi Analisis Keputusan dapat berjalan Decision Analysis Simulation can work |
Ujian Tengah Semester 3.00 %
|
|
|
|
|
5 |
|
Slicing and Dicing Marketing Data with PivotTables, Using Excel Charts to Summarize
Marketing Data, Using Excel Functions to Summarize Marketing Data (ch01) |
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
- Winston, Wayne L., (2014)
|
- Ujian Tengah Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Deskriptif, Prediktif, Prescriptif Descriptive, Predictive, Prescriptive |
KAD: Mampu mensimulasikan Spreadsheet untuk olah data marketing Able to simulate Spreadsheets for marketing data processing (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Olah data Advertising dapat dihasilkan melalui spreadsheet Advertising data processing can be generated via spreadsheet |
Ujian Tengah Semester 3.00 %
|
|
|
|
|
6 |
|
What do Customers Want? Conjoint Analysis, Logistic Regression, Discrete Choice Analysis (ch16) |
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Tengah Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Deskriptif, Prediktif, Prescriptif Descriptive, Predictive, Prescriptive |
KAD: Mampu mensimulasikan Spreadsheet untuk olah data marketing Able to simulate Spreadsheets for marketing data processing (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Olah data Advertising dapat dihasilkan melalui spreadsheet Advertising data processing can be generated via spreadsheet |
Ujian Tengah Semester 3.00 %
|
|
|
|
|
7 |
|
Customer Value: Calculating Lifetime Customer Value, Using Customer Value to Value a
Business, Customer Value, Monte Carlo Simulation, and Marketing
Decision Making, Allocating Marketing Resources between Customer Acquisition and
Retention (ch19) |
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Tengah Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Deskriptif, Prediktif, Prescriptif Descriptive, Predictive, Prescriptive |
KAD: Mampu mensimulasikan Data mining Able to simulate Data mining (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Olah data mining dapat menghasilkan Internet dan Social Marketing value Data mining can produce Internet and Social Marketing value |
Ujian Tengah Semester 3.00 %
|
|
|
|
|
8 |
|
Market Segmentation: Cluster Analysis, Collaborative Filtering,
Using Classification Trees for
Segmentation (ch23) |
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Akhir Semester - 5.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Deskriptif, Prediktif, Prescriptif Descriptive, Predictive, Prescriptive |
KAD: Mampu mensimulasikan Spreadsheet untuk olah data marketing Able to simulate Spreadsheets for marketing data processing (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Olah data Advertising dapat dihasilkan melalui spreadsheet Advertising data processing can be generated via spreadsheet |
Ujian Akhir Semester 5.00 %
|
|
|
|
|
9 |
|
Forecasting New Product Sales: Using S Curves to Forecast Sales of a New Product,The Bass Diffusion Model,Using the Copernican Principle to
Predict Duration of Future Sales (ch26) |
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Akhir Semester - 5.00 %
|
|
CAPAIAN PEMBELAJARAN: Mampu merancang dan menggunakan database, serta mengolah dan menganalisa data dengan alat dan teknik pengolahan data. (CPL02 (KK.b)) Able to design and use databases, as well as process and analyze data using data processing tools and techniques. (CPL02 (KK.b))
|
CPMK: Teknik Olahan Data Data Processing Techniques |
KAD: Mampu menerapkan tools olahan data Able to apply data processing tools (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Tools yang digunakan dapat menghasilkan output The tools used can produce output |
Ujian Akhir Semester 5.00 %
|
|
|
|
|
10 |
|
Retailing: Market Basket Analysis and Lift,RFM Analysis and Optimizing Direct Mail Campaigns,Using the SCANPRO Model and Its Variants, Allocating Retail Space and Sales Resources,Forecasting Sales from Few Data Points (ch29) |
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Akhir Semester - 5.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Deskriptif, Prediktif, Prescriptif Descriptive, Predictive, Prescriptive |
KAD: Mampu mensimulasikan Data mining Able to simulate Data mining (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Olah data mining dapat menghasilkan Internet dan Social Marketing value Data mining can produce Internet and Social Marketing value |
Ujian Akhir Semester 5.00 %
|
|
|
|
|
11 |
|
Advertising: Measuring the Effectiveness of Advertising,Media Selection Models,Pay Per Click (PPC) Online Advertising (ch34) |
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Akhir Semester - 5.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Deskriptif, Prediktif, Prescriptif Descriptive, Predictive, Prescriptive |
KAD: Mampu mensimulasikan Spreadsheet untuk olah data marketing Able to simulate Spreadsheets for marketing data processing (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Olah data Advertising dapat dihasilkan melalui spreadsheet Advertising data processing can be generated via spreadsheet |
Ujian Akhir Semester 5.00 %
|
|
|
|
|
12 |
|
Marketing Research Tools: Principal Component Analysis (PCA),Multidimensional Scaling (MDS),Classification Algorithms: Naive Bayes
Classifier and Discriminant Analysis,Analysis of Variance: One-way & Two-way ANOVA (ch37)
|
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Akhir Semester - 5.00 %
|
|
CAPAIAN PEMBELAJARAN: Mampu merancang dan menggunakan database, serta mengolah dan menganalisa data dengan alat dan teknik pengolahan data. (CPL02 (KK.b)) Able to design and use databases, as well as process and analyze data using data processing tools and techniques. (CPL02 (KK.b))
|
CPMK: Teknik Olahan Data Data Processing Techniques |
KAD: Mampu menerapkan tools olahan data Able to apply data processing tools (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Tools yang digunakan dapat menghasilkan output The tools used can produce output |
Ujian Akhir Semester 5.00 %
|
|
|
|
|
13 |
|
Internet and Social Marketing: Networks,The Mathematics Behind The Tipping Point, Viral Marketing,Text Mining (ch42) |
|
170.00 |
Memanfaatkan berbagai sumber belajar. memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Akhir Semester - 5.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Deskriptif, Prediktif, Prescriptif Descriptive, Predictive, Prescriptive |
KAD: Mampu mensimulasikan Data mining Able to simulate Data mining (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Olah data mining dapat menghasilkan Internet dan Social Marketing value Data mining can produce Internet and Social Marketing value |
Ujian Akhir Semester 5.00 %
|
|
|
|
|
14 |
|
Presentasi Tugas |
|
170.00 |
Mempresentasikan semua tugas yang diberikan pada sesi perkuliahan |
|
|
|
CAPAIAN PEMBELAJARAN: Mampu memahami, menganalisis, menilai konsep dasar dan peran sistem informasi dalam mengelola data yaitu pemfilteran, agregasi dan pengorganisasian dalam analisis dan visualisasi data untuk memberikan rekomendasi pengambilan keputusan pada proses dan sistem organisasi. (CPL01 (KK.a)) Able to understand, analyze, and evaluate the basic concepts and role of information systems in managing data, including filtering, aggregation, and organization in data analysis and visualization, to provide decision-making recommendations in organizational processes and systems. (CPL01 (KK.a))
|
CPMK: Analisis dan Visualisasi Data Data Analysis and Visualization |
KAD: Mampu memproyeksikan Tugas Kelompok Able to project Group Assignments (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Tugas dapat dipresentasikan Assignments can be presented |
Tugas 50.00 %
|
|
|
|
|