Sesi Ke |
KAD |
Bahan Kajian |
Metoda Pembelajaran |
Waktu Belajar (Menit) |
Pengalaman Belajar Mahasiswa |
Referensi |
Kriteria Penilaian (Indikator) |
1 |
|
Perkembangan teknologi Kecerdasan Artifisial dan metode-metode yang telah dikembangkan. |
|
150.00 |
Mahasiswa menerima ceramah sejarah Kecerdasan Artifisial, berbagai teknik dan metode yang dikembangkan oleh para ahli. Mahasiswa melakukan persiapan lingkungan pemrograman menggunakan bahasa Python. |
- Stuart Russell and Peter Norvig(2009) (Bab 1 Introduction.
Bab 2 Intelligent Agents.)
|
- Tugas Individu - 2.00 %
- Ujian Tengah Semester - 2.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Mahasiswa menggunakan teknik pencarian untuk mensimulasikan kecerdasan. Students use search techniques to simulate intelligence |
KAD: Memahami perkembangan sejarah Kecerdasan Artifisial dan aplikasinya. Understand the historical development of AI and its applications. (2,2) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Setup environment pemrograman selesai. Finished programming environment setup. |
Tugas Individu 2.00 %
Ujian Tengah Semester 2.00 %
|
|
|
|
|
2 |
|
Intelligent agent dan Search space problem. |
|
150.00 |
Mahasiswa melakukan eksplorasi simulasi kecerdasan menggunakan teknik pencarian. |
- Stuart Russell and Peter Norvig(2009) (Bab 3 Solving Problems by Searching.)
|
- Tugas Individu - 3.00 %
- Ujian Tengah Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Mahasiswa menggunakan teknik pencarian untuk mensimulasikan kecerdasan. Students use search techniques to simulate intelligence |
KAD: Memahami representasi masalah dalam ruang pencarian Understand how to represents problems as search space (2,2) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Mensimulasikan kecerdasan menggunakan algoritma-algoritma pencarian. Simulating intelligence using search algorithms. |
Tugas Individu 3.00 %
Ujian Tengah Semester 3.00 %
|
|
|
|
|
3 |
|
Logika proposisi dan inferensi logika. |
|
150.00 |
Mahasiswa menerapkan inferensi logika pada permainan Wumpus. |
- Stuart Russell and Peter Norvig(2009) (Bab 7 Logical Agents.)
|
- Tugas Individu - 3.00 %
- Ujian Tengah Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Representasi pengetahuan dan inferensi. Knowledge representation and inference. |
KAD: Inferensi logika proposisi. Inference in propositional logic. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Melakukan inferensi logika proposisi. Make inference using propositional logic. |
Tugas Individu 2.00 %
Ujian Tengah Semester 2.00 %
|
|
|
|
KAD: Logika proposisi. Propositional logic. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Merepresentasikan pengetahuan menggunakan logika proposisi. Representing knowledge using propositional logic |
Tugas Individu 1.00 %
Ujian Tengah Semester 1.00 %
|
1.00(Pass)
|
Solusi akurat untuk memecahkan puzzle logika menggunakan logika proposisi dan logika predikat. Accurate solutions to logic puzzles using propositional logic and predicate logic. |
|
|
|
|
4 |
|
Logika Proposisi dan Logika Predikat |
|
150.00 |
Mahasiswa memahami kekurangan Logika Proposisi dalam merepresentasikan pengetahuan dan bagaimana Logika Predikat mengatasi kekurangan tersebut. |
- Stuart Russell and Peter Norvig(2009) (Bab 8 First-Order Logic)
|
- Tugas Individu - 3.00 %
- Ujian Tengah Semester - 3.00 %
- Tugas Kelompok - 10.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Representasi pengetahuan dan inferensi. Knowledge representation and inference. |
KAD: Logika proposisi. Propositional logic. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Merepresentasikan pengetahuan menggunakan logika proposisi. Representing knowledge using propositional logic |
Tugas Individu 2.00 %
Ujian Tengah Semester 2.00 %
Tugas Kelompok 8.00 %
|
1.00(Pass)
|
Solusi akurat untuk memecahkan puzzle logika menggunakan logika proposisi dan logika predikat. Accurate solutions to logic puzzles using propositional logic and predicate logic. |
|
|
|
CPMK: Logika predikat. Predicate logic. |
KAD: Kuantor eksistensial dan universal. Existential and universal quantifier. (2,2) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Penerapan kuantor yang tepat untuk merepresentasikan pengetahuan. Correct application of quantifiers in representing knowledge. |
Tugas Individu 1.00 %
Ujian Tengah Semester 1.00 %
Tugas Kelompok 2.00 %
|
|
|
|
|
5 |
|
Ketidakpastian dalam representasi pengetahuan. |
|
150.00 |
Mahasiswa melakukan eksplorasi kelemahan teknik logika proposisi dan logika predikat untuk merepresntasikan pengetahuan yang tidak fully-observable. |
- Stuart Russell and Peter Norvig(2009) (Bab 13 Quantifying Uncertainty)
|
- Tugas Individu - 3.00 %
- Ujian Tengah Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Representasi pengetahuan dan inferensi. Knowledge representation and inference. |
KAD: Inferensi logika proposisi. Inference in propositional logic. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Melakukan inferensi logika proposisi. Make inference using propositional logic. |
Tugas Individu 1.00 %
Ujian Tengah Semester 1.00 %
|
|
|
|
CPMK: Penalaran Bayesian. Bayesian reasoning. |
KAD: Peluang bersyarat. Conditional probability. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Menggunakan peluang bersyarat dengan benar. Apply conditional probability accurately. |
Tugas Individu 2.00 %
Ujian Tengah Semester 2.00 %
|
|
|
|
|
6 |
|
Inferensi Naive Bayes. |
|
150.00 |
Mahasiswa menerapkan proses inferensi menggunakan data historis dan memahami perlunya teknik smoothing. |
- Stuart Russell and Peter Norvig(2009) (Bab 13 Quantifying Uncertainty)
|
- Tugas Individu - 3.00 %
- Ujian Tengah Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Penalaran Bayesian. Bayesian reasoning. |
KAD: Peluang bersyarat. Conditional probability. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Menggunakan peluang bersyarat dengan benar. Apply conditional probability accurately. |
Tugas Individu 3.00 %
Ujian Tengah Semester 3.00 %
|
|
|
|
|
7 |
|
Pembelajaran Mesin. |
|
150.00 |
Mahasiswa melakukan eksplorasi pengembangan teknik simulasi kecerdasan. |
- Stuart Russell and Peter Norvig(2009) (Bab 18 Learning from Examples)
|
- Tugas Individu - 3.00 %
- Ujian Tengah Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Sistem pakar berbasis aturan. Rule-based Expert Systems. |
KAD: Pohon keputusan dan aturan. Decision tree and rules. (2,2) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Menerjemahkan pohon keputusan sebagai pengetahuan berbasis aturan. Translate decision tree as rule-based knowledge. |
Tugas Individu 1.50 %
Ujian Tengah Semester 1.50 %
|
|
|
|
CPMK: Ragam teknik-teknik Machine Learning. Variety of Machine Learning techniques. |
KAD: Memahami perbedaan antara Supervised Learning dan Unsupervised Learning. Understand the difference between Supervised Learning and Unsupervised Learning. (2,2) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Membedakan Supervised Learning dengan Unsupervised Learning. Differentiate between Supervised Learning and Unsupervised Learning |
Tugas Individu 1.50 %
Ujian Tengah Semester 1.50 %
|
|
|
|
|
8 |
|
Supervised Learning. |
|
150.00 |
Mahasiswa melakukan eksplorasi menggunakan scikit-learn. |
- Stuart Russell and Peter Norvig(2009) (Bab 18 Learning from Examples)
|
- Tugas Individu - 2.00 %
- Ujian Akhir Semester - 2.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Ragam teknik-teknik Machine Learning. Variety of Machine Learning techniques. |
KAD: Memahami perbedaan antara Supervised Learning dan Unsupervised Learning. Understand the difference between Supervised Learning and Unsupervised Learning. (2,2) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Membedakan Supervised Learning dengan Unsupervised Learning. Differentiate between Supervised Learning and Unsupervised Learning |
Tugas Individu 1.00 %
Ujian Akhir Semester 1.00 %
|
|
|
|
CPMK: Supervised Learning. Supervised Learning. |
KAD: Mengembangkan keahlian penerapan Supervised Learning pada masalah klasifikasi. Develop skills in supervised learning and its applications in classification problems. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Analisis dan interpretasi yang akurat terhadap prediksi model. Accurate analysis and interpretation of the model's predictions. |
Tugas Individu 1.00 %
Ujian Akhir Semester 1.00 %
|
|
|
|
|
9 |
|
Unsupervised Learning |
|
150.00 |
Mahasiswa melakukan eksplorasi menggunakan library scikit-learn. |
- Stuart Russell and Peter Norvig(2009) (Bab 18 Learning from Examples
Bab 20 Learning Probabilistic Models)
|
- Tugas Individu - 3.00 %
- Ujian Akhir Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Ragam teknik-teknik Machine Learning. Variety of Machine Learning techniques. |
KAD: Memahami perbedaan antara Supervised Learning dan Unsupervised Learning. Understand the difference between Supervised Learning and Unsupervised Learning. (2,2) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Membedakan Supervised Learning dengan Unsupervised Learning. Differentiate between Supervised Learning and Unsupervised Learning |
Tugas Individu 1.00 %
Ujian Akhir Semester 1.00 %
|
|
|
|
CPMK: Perseptron dan Jaringan Syaraf Tiruan. Perceptron and Artificial Neural Networks. |
KAD: Memahami dan menerapkan cara kerja jaringan syaraf tiruan untuk pemodelan prediktif. Understand and apply the fundamental workings of neural networks for predictive modeling. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Mensimulasikan model perseptron secara manual dan menggunakan program. Simulating perceptron model manually and programmatically. |
Tugas Individu 2.00 %
Ujian Akhir Semester 2.00 %
|
|
|
|
|
10 |
|
Neural Networks |
|
150.00 |
Mahasiswa melakukan eksplorasi menggunakan library scikit-learn. |
- Stuart Russell and Peter Norvig(2009) (Bab 18 Learning from Examples)
|
- Tugas Individu - 3.00 %
- Ujian Akhir Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Ragam teknik-teknik Machine Learning. Variety of Machine Learning techniques. |
KAD: Memahami perbedaan antara Supervised Learning dan Unsupervised Learning. Understand the difference between Supervised Learning and Unsupervised Learning. (2,2) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Membedakan Supervised Learning dengan Unsupervised Learning. Differentiate between Supervised Learning and Unsupervised Learning |
Tugas Individu 1.00 %
Ujian Akhir Semester 1.00 %
|
|
|
|
CPMK: Perseptron dan Jaringan Syaraf Tiruan. Perceptron and Artificial Neural Networks. |
KAD: Memahami dan menerapkan cara kerja jaringan syaraf tiruan untuk pemodelan prediktif. Understand and apply the fundamental workings of neural networks for predictive modeling. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Mensimulasikan model perseptron secara manual dan menggunakan program. Simulating perceptron model manually and programmatically. |
Tugas Individu 2.00 %
Ujian Akhir Semester 2.00 %
|
|
|
|
|
11 |
|
Deep learning |
|
150.00 |
Mahasiswa melakukan eksplorasi menggunakan library scikit-learn. |
- Stuart Russell and Peter Norvig(2009) (Bab 18 Learning from Examples)
- Andrew W. Trask(2019) (Bab 2 Fundamental Concepts: How do Machines Learn?)
- Ian Goodfellow and Yoshua Bengio and Aaron Courville(2016) (Bab 5 Machine Learning Basics)
|
- Tugas Individu - 3.00 %
- Ujian Akhir Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Perseptron dan Jaringan Syaraf Tiruan. Perceptron and Artificial Neural Networks. |
KAD: Memahami dan menerapkan cara kerja jaringan syaraf tiruan untuk pemodelan prediktif. Understand and apply the fundamental workings of neural networks for predictive modeling. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Mensimulasikan model perseptron secara manual dan menggunakan program. Simulating perceptron model manually and programmatically. |
Tugas Individu 1.00 %
Ujian Akhir Semester 1.00 %
|
|
|
|
CPMK: Deep learning. Deep learning. |
KAD: Menerapkan teknik-teknik Deep Learning untuk tugas-tugas prediktif yang kompleks. Apply Deep Learning techniques for complex predictive tasks. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Pengembangan perseptron dan MLP untuk menerapkan teknik Deep Learning. Successful extension of the neural network and multi layer perceptron to incorporate deep learning techniques. |
Tugas Individu 2.00 %
Ujian Akhir Semester 2.00 %
|
|
|
|
|
12 |
|
Pengolahan Bahasa Alami |
|
150.00 |
Mahasiswa melakukan eksplorasi dasar-dasar pengolahan bahasa alami menggunakan library SpaCy. |
- Andrew W. Trask(2019) (Bab 11 Neural Networks that Understand Language: king - man + woman == ?)
- Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.(2023) (Bab 15 Natural Language Processing: Pretraining)
|
- Tugas Individu - 3.00 %
- Tugas Kelompok - 10.00 %
- Ujian Akhir Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Deep learning. Deep learning. |
KAD: Menerapkan teknik-teknik Deep Learning untuk tugas-tugas prediktif yang kompleks. Apply Deep Learning techniques for complex predictive tasks. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Pengembangan perseptron dan MLP untuk menerapkan teknik Deep Learning. Successful extension of the neural network and multi layer perceptron to incorporate deep learning techniques. |
Tugas Individu 1.00 %
Tugas Kelompok 2.00 %
Ujian Akhir Semester 1.00 %
|
|
|
|
CPMK: Pengolahan Bahasa Alami. Natural Language Processing. |
KAD: Menerapkan teknik Deep Learning untuk Pengolahan Bahasa Alami. Apply Deep Learning techniques in Natural Language Processing. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Implementasi fungsional pengolahan teks menggunakan Python. Functional implementation of a text processing tool in Python using NLP techniques. |
Tugas Individu 2.00 %
Tugas Kelompok 8.00 %
Ujian Akhir Semester 2.00 %
|
|
|
|
|
13 |
|
Computer Vision |
|
150.00 |
Mahasiswa melakukan eksplorasi menggunakan library TensorFlow dan OpenCV. |
- Andrew W. Trask(2019) (Bab 10 Neural Learning about Edges and Corners: Intro to Convolutional Neural Networks)
- Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.(2023) (Bab 14 Computer Vision)
|
- Tugas Individu - 3.00 %
- Ujian Akhir Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Deep learning. Deep learning. |
KAD: Menerapkan teknik-teknik Deep Learning untuk tugas-tugas prediktif yang kompleks. Apply Deep Learning techniques for complex predictive tasks. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Pengembangan perseptron dan MLP untuk menerapkan teknik Deep Learning. Successful extension of the neural network and multi layer perceptron to incorporate deep learning techniques. |
Tugas Individu 1.00 %
Ujian Akhir Semester 1.00 %
|
|
|
|
CPMK: Computer vision. Computer vision. |
KAD: Menerapkan teknik Deep Learning untuk Computer Vision. Apply Deep Learning techniques for Computer Vision problems. (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Implementasi pengolahan citra sederhana menggunakan Python. Correct implementation of basic image processing tasks in Python. |
Tugas Individu 2.00 %
Ujian Akhir Semester 2.00 %
|
|
|
|
|
14 |
|
Etika dalam penggunaan Kecerdasan Artifisial |
|
150.00 |
Mahasiswa membuat kajian sederhana mengenai etika penggunaan teknologi Kecerdasan Artifisial dalam kehidupan. |
- Stuart Russell and Peter Norvig(2009) (Bab 26 Philosophical Foundations
Bab 27 AI: The Present and Future)
|
- Tugas Individu - 3.00 %
- Ujian Akhir Semester - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: Etika dan perkembangan Kecerdasan Artifisial. Ethics and the future of AI. |
KAD: Memahami permasalahan etika yang muncul dari perkembangan teknologi Kecerdasan Buatan. Understand the impacts of ethical problems from the advancement of Artificial Intelligence technologies. (4,4) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Essay reflektif yang sistematis dalam mempertimbangkan aspek etika Kecerdasan Buatan. Well-written reflective essay on ethical considerations in AI. |
Tugas Individu 3.00 %
Ujian Akhir Semester 3.00 %
|
|
|
|
|