Sesi Ke |
KAD |
Bahan Kajian |
Metoda Pembelajaran |
Waktu Belajar (Menit) |
Pengalaman Belajar Mahasiswa |
Referensi |
Kriteria Penilaian (Indikator) |
1 |
|
Pengertian descriptive, diagnostic, predictive, presciptive Analysis dan contoh implementasi |
|
150.00 |
Memanfaatkan berbagai sumber belajar, memberi dan menerima umpan balik |
- Ali Abdulhussein(2022)
- Peter Bruce, Andrew Bruce & Peter Gedeck(2020)
|
|
|
CAPAIAN PEMBELAJARAN: Mampu memahami, menganalisis, menilai konsep dasar dan peran sistem informasi dalam mengelola data yaitu pemfilteran, agregasi dan pengorganisasian dalam analisis dan visualisasi data untuk memberikan rekomendasi pengambilan keputusan pada proses dan sistem organisasi. (CPL01 (KK.a)) Able to understand, analyze, and evaluate the basic concepts and role of information systems in managing data, including filtering, aggregation, and organization in data analysis and visualization, to provide decision-making recommendations in organizational processes and systems. (CPL01 (KK.a))
|
CPMK: CPMK 1 : Membuat rekomendasi pengambilan keputusan pada proses dan sistem organisasi berdasarkan hasil analitik data CPMK 1 : Make recommendations for decision making on organizational processes and systems based on data analytical results |
KAD: Sub CPMK 1 : Memahami perbedaan descriptive analytics, diagnostic analytics, predictive analytics dan prescriptive analytics Understand the differences between descriptive analytics, diagnostic analytics, predictive analytics and prescriptive analytics (2,2) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Tugas teori dan konsep analitik data dapat diselesaikan Theoretical tasks and data analytical concepts can be completed |
Quiz 1 3.00 %
|
0.00(Fail)
| 25.00(Pass)
| 50.00(Pass)
| 75.00(Pass)
| 100.00(Pass)
|
Jawaban kuis salah Incorrect quiz for answer | 25% Jawaban kuis benar 25% quiz answers are correct | 50% Jawaban kuis benar 50% quiz answers are correct | 75% Jawaban kuis benar 75% quiz answers are correct | 100% Jawaban kuis benar 100% quiz answers are correct |
|
|
|
|
2 |
|
Jenis sumber data (data mesin, data file, data primer, data sekunder), teknik pengumpulan data (web scraping, database query, social media monitoring)
|
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS.
- Memberi dan menerima umpan balik melalui diskusi dan tanya jawab.
- Menjalankan praktikum
|
|
|
|
CAPAIAN PEMBELAJARAN: Mampu memahami, menganalisis, menilai konsep dasar dan peran sistem informasi dalam mengelola data yaitu pemfilteran, agregasi dan pengorganisasian dalam analisis dan visualisasi data untuk memberikan rekomendasi pengambilan keputusan pada proses dan sistem organisasi. (CPL01 (KK.a)) Able to understand, analyze, and evaluate the basic concepts and role of information systems in managing data, including filtering, aggregation, and organization in data analysis and visualization, to provide decision-making recommendations in organizational processes and systems. (CPL01 (KK.a))
|
CPMK: CPMK 1 : Membuat rekomendasi pengambilan keputusan pada proses dan sistem organisasi berdasarkan hasil analitik data CPMK 1 : Make recommendations for decision making on organizational processes and systems based on data analytical results |
KAD: Sub CPMK 2 : Memahami tipe sumber data dan menerapkan beberapa teknik pengumpulan data dalam analitik data Sub CPMK 2 : Understand data source types and apply several data collection techniques in data analytics (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Ketepatan dan kelengkapan dalam laporan praktikum Accuracy and completeness in the practicum report |
Praktikum 1 3.00 %
|
|
|
|
|
3 |
|
data cleansing, transformasi data |
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS.
- Memberi dan menerima umpan balik melalui diskusi dan tanya jawab.
- Mengerjakan pre-test dan post-test
|
|
- Ujian Tengah Semester - 7.50 %
|
|
CAPAIAN PEMBELAJARAN: Mampu memahami, menganalisis, menilai konsep dasar dan peran sistem informasi dalam mengelola data yaitu pemfilteran, agregasi dan pengorganisasian dalam analisis dan visualisasi data untuk memberikan rekomendasi pengambilan keputusan pada proses dan sistem organisasi. (CPL01 (KK.a)) Able to understand, analyze, and evaluate the basic concepts and role of information systems in managing data, including filtering, aggregation, and organization in data analysis and visualization, to provide decision-making recommendations in organizational processes and systems. (CPL01 (KK.a))
|
CPMK: CPMK 1 : Membuat rekomendasi pengambilan keputusan pada proses dan sistem organisasi berdasarkan hasil analitik data CPMK 1 : Make recommendations for decision making on organizational processes and systems based on data analytical results |
KAD: Sub CPMK 3 : Menerapkan preprocessing data: cleansing dan transformasi Sub CPMK 3 : Apply data preprocessing: Cleansing and transformation (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Ketepatan dalam menjawab soal ujian Accuracy in answering test questions |
Ujian Tengah Semester 7.50 %
|
|
|
|
|
4 |
|
statistik deskriptif dasar dalam descriptive analytics serta probabilitas dan statistika inferensi dalam diagnostic dan predictive analytics |
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS. - Memberi dan menerima umpan balik melalui diskusi dan tanya jawab.
|
- Peter Bruce, Andrew Bruce & Peter Gedeck(2020)
|
|
|
CAPAIAN PEMBELAJARAN: Mampu memahami, menganalisis, menilai konsep dasar dan peran sistem informasi dalam mengelola data yaitu pemfilteran, agregasi dan pengorganisasian dalam analisis dan visualisasi data untuk memberikan rekomendasi pengambilan keputusan pada proses dan sistem organisasi. (CPL01 (KK.a)) Able to understand, analyze, and evaluate the basic concepts and role of information systems in managing data, including filtering, aggregation, and organization in data analysis and visualization, to provide decision-making recommendations in organizational processes and systems. (CPL01 (KK.a))
|
CPMK: CPMK 1 : Membuat rekomendasi pengambilan keputusan pada proses dan sistem organisasi berdasarkan hasil analitik data CPMK 1 : Make recommendations for decision making on organizational processes and systems based on data analytical results |
KAD: Sub CPMK 4 : Menerapkan analisis data eksploratori Sub CPMK 4 : Apply exploratory data analysis (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Ketepatan menjawab soal ujian Accuracy in answering test questions |
Quiz 2 3.00 %
|
|
|
|
|
5 |
|
Analisis data eksploratory dan visualisasi (histogram, box plot, pie chart, bar chart, frequency table, cross tabulation) |
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS. - Memberi dan menerima umpan balik melalui diskusi dan tanya jawab. - Menjalankan praktikum |
- Peter Bruce, Andrew Bruce & Peter Gedeck(2020)
- Jake VanderPlas(2017)
|
- Ujian Tengah Semester - 7.50 %
|
|
CAPAIAN PEMBELAJARAN: Mampu memahami, menganalisis, menilai konsep dasar dan peran sistem informasi dalam mengelola data yaitu pemfilteran, agregasi dan pengorganisasian dalam analisis dan visualisasi data untuk memberikan rekomendasi pengambilan keputusan pada proses dan sistem organisasi. (CPL01 (KK.a)) Able to understand, analyze, and evaluate the basic concepts and role of information systems in managing data, including filtering, aggregation, and organization in data analysis and visualization, to provide decision-making recommendations in organizational processes and systems. (CPL01 (KK.a))
|
CPMK: CPMK 1 : Membuat rekomendasi pengambilan keputusan pada proses dan sistem organisasi berdasarkan hasil analitik data CPMK 1 : Make recommendations for decision making on organizational processes and systems based on data analytical results |
KAD: Sub CPMK 5 : Membuat visualisasi dan rekomendasi pengambilan keputusan Sub CPMK 5 : Create visualizations and decision making recommendations (6,6) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Ketepatan menjawab soal ujian Accuracy in answering exam question |
Ujian Tengah Semester 7.50 %
|
|
|
|
|
6 |
|
Penggabungan tabel basis data untuk mempersiapkan data, transformasi dan pembersihan data menggunakan fungsi SQL |
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS. - Memberi dan menerima umpan balik melalui diskusi dan tanya jawab. - Menjalankan praktikum |
- Upom Malik, Matt Goldwasser, and Benjamin Johnston(2019)
|
- Ujian Tengah Semester - 7.50 %
|
|
CAPAIAN PEMBELAJARAN: Mampu merancang dan menggunakan database, serta mengolah dan menganalisa data dengan alat dan teknik pengolahan data. (CPL02 (KK.b)) Able to design and use databases, as well as process and analyze data using data processing tools and techniques. (CPL02 (KK.b))
|
CPMK: CPMK 2 : Mengolah dan menganalisis data dengan berbagai teknik dasar Process and analyze data with various basic techniques |
KAD: Sub CPMK 6 : Mempersiapkan data menggunakan SQL Sub CPMK 6 : Prepare data using SQL (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Ketepatan Jawaban Accuracy of answers |
Ujian Tengah Semester 7.50 %
|
0.00(Fail)
| 25.00(Pass)
| 50.00(Pass)
| 75.00(Pass)
| 100.00(Pass)
|
Jawaban ujian salah Incorrect test answer | 25% Jawaban ujian benar 25% Answer for Examination test is correct | 50% Jawaban ujian benar 50% Answer for Examination test is correct | 75% Jawaban ujian benar 75% Answer for Examination test is correct | 100% Jawaban kuis benar dan lengkap 100% Answer for Examination test is correct and complete |
|
|
|
|
7 |
|
Fungsi agregat dalam SQl yang dikombinasikan dengan GROUP BY dan HAVING untuk menampilkan statistika deskriptif |
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS. - Memberi dan menerima umpan balik melalui diskusi dan tanya jawab. - Menjalankan praktikum |
- Upom Malik, Matt Goldwasser, and Benjamin Johnston(2019)
|
- Ujian Tengah Semester - 2.50 %
- Praktikum 2 - 3.00 %
- Quiz 3 - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Mampu merancang dan menggunakan database, serta mengolah dan menganalisa data dengan alat dan teknik pengolahan data. (CPL02 (KK.b)) Able to design and use databases, as well as process and analyze data using data processing tools and techniques. (CPL02 (KK.b))
|
CPMK: CPMK 2 : Mengolah dan menganalisis data dengan berbagai teknik dasar Process and analyze data with various basic techniques |
KAD: Sub CPMK 7 : Menampilkan dan menganalisis statistika deskriptif menggunakan SQL Sub CPMK 7 : Displays and analyze descriptive statistics using SQL (4,4) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
1. Ketepatan menjawab soal ujian Accuracy in answering test questions |
Ujian Tengah Semester 2.50 %
|
|
PI Description | PI Assessment Methods |
2. Ketepatan menjawab soal quiz Accuracy in answering quiz questions |
Quiz 3 3.00 %
|
|
PI Description | PI Assessment Methods |
3. Ketepatan dan kelengkapan laporan praktikum The accuracy and completeness of the practicum report |
Praktikum 2 3.00 %
|
|
|
|
|
8 |
|
Persamaan regresi linier,r-square, uji asumsi, dan korelasi. |
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS. - Memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Akhir Semester - 5.00 %
- Quiz 4 - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: CPMK 3 : Memahami prinsip-prinsip Computational Thinking (CT) untuk mempelajari data science, menganalisis permasalahan data science dengan framework CT serta mengekspresikan masalah bisnis sebagai masalah data Understand the principles of Computational Thinking (CT) to learn data science, analyze data science problems with the CT framework and express business problems as data problems |
KAD: Sub CPMK 8: Memahami pemodelan statistik dan Regresi linear
Understand statistical modeling and Linear regression (2,2) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
1. Ketepatan jawaban Accuracy of answers |
Ujian Akhir Semester 5.00 %
|
0.00(Fail)
| 25.00(Fail)
| 50.00(Pass)
| 75.00(Pass)
| 100.00(Pass)
|
Jawaban ujian salah Incorrect test answer | 25% Jawaban ujian benar 25% Answer for Examination test is correct | 50% Jawaban ujian benar 50% Answer for Examination test is correct | 75% Jawaban ujian benar 75% Answer for Examination test is correct | 100% Jawaban ujian benar dan lengkap 100% Answer for Examination test is correct and complete |
|
PI Description | PI Assessment Methods |
2. Ketepatan jawaban quiz Accuracy of quiz answer |
Quiz 4 3.00 %
|
0.00(Fail)
| 25.00(Fail)
| 50.00(Pass)
| 75.00(Pass)
| 100.00(Pass)
|
Jawaban quiz salah Incorrect quiz answer | 25% jawaban quiz benar 25% answer for quiz test is correct | 50% Jawaban quiz benar 50% Answer for Quiz test is correct | 75% Jawaban ujian benar 75% Answer for Quiz test is correct | 100% Jawaban quiz benar dan lengkap 100% Answer for Quiz test is correct and complete |
|
|
|
|
9 |
|
Regresi dengan prediktor kualitatif, dummy variable |
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS. - Memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Akhir Semester - 5.00 %
- Praktikum 3 - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: CPMK 3 : Memahami prinsip-prinsip Computational Thinking (CT) untuk mempelajari data science, menganalisis permasalahan data science dengan framework CT serta mengekspresikan masalah bisnis sebagai masalah data Understand the principles of Computational Thinking (CT) to learn data science, analyze data science problems with the CT framework and express business problems as data problems |
KAD: Sub CPMK 9 : Memahami dan menerapkan model regresi logistik dengan prediktor kualitatif
Understand and apply logistic regression models with qualitative predictors (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Ketepatan jawaban Accuracy of answers |
Ujian Akhir Semester 5.00 %
Praktikum 3 3.00 %
|
0.00(Fail)
| 25.00(Pass)
| 50.00(Pass)
| 75.00(Pass)
| 100.00(Pass)
|
Jawaban salah Incorrect answer | 25% Jawaban benar 25% Answer is correct | 50% Jawaban benar 50% Answer is correct | 75% Jawaban benar 75% Answer is correct | 100% Jawaban benar dan lengkap 100% Answer is correct and complete |
|
|
|
|
10 |
|
Peramalan data deret waktu menggunakan exponential smoothing (single exponential smoothing, double exponential smoothing, holt-winter) dan jaringan syaraf tiruan |
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS. - Memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
- Ujian Akhir Semester - 5.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: CPMK 3 : Memahami prinsip-prinsip Computational Thinking (CT) untuk mempelajari data science, menganalisis permasalahan data science dengan framework CT serta mengekspresikan masalah bisnis sebagai masalah data Understand the principles of Computational Thinking (CT) to learn data science, analyze data science problems with the CT framework and express business problems as data problems |
KAD: Sub CPMK 10: Memahami dan menerapkan model time series dan forecasting Understand and apply time series and forecasting models (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Ketepatan jawaban Accuracy of answers |
Ujian Akhir Semester 5.00 %
|
0.00(Fail)
| 25.00(Pass)
| 50.00(Pass)
| 75.00(Pass)
| 100.00(Pass)
|
Jawaban ujian salah Incorrect test answer | 25% Jawaban ujian benar 25% Answer for Examination test is correct | 50% Jawaban ujian benar 50% Answer for Examination test is correct | 75% Jawaban ujian benar 75% Answer for Examination test is correct | 100% Jawaban ujian benar dan lengkap 100% Answer for Examination test is correct and complete |
|
|
|
|
11 |
|
Langkah-langkah dasar visualisasi data, melakukan import dan transformasi data, model dan Relasi antar tabel menggunakan power BI |
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS. - Memberi dan menerima umpan balik melalui diskusi dan tanya jawab. - Menjalankan praktikum |
- Devin Knight, Brian Knight, Mitchell Pearson, Manuel Quintana(2018)
- Brett Powell (2018)
|
- Praktikum 4 - 3.00 %
- Ujian Akhir Semester - 5.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: CPMK 3 : Memahami prinsip-prinsip Computational Thinking (CT) untuk mempelajari data science, menganalisis permasalahan data science dengan framework CT serta mengekspresikan masalah bisnis sebagai masalah data Understand the principles of Computational Thinking (CT) to learn data science, analyze data science problems with the CT framework and express business problems as data problems |
KAD: Sub CPMK 11 : Menerapkan visualisasi data menggunakan Power BI Implement data visualization using Power BI (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Ketepatan jawaban Accuracy of answers |
Praktikum 4 3.00 %
Ujian Akhir Semester 5.00 %
|
0.00(Fail)
| 25.00(Pass)
| 50.00(Pass)
| 75.00(Pass)
| 100.00(Pass)
|
Jawaban salah Incorrect answer | 25% Jawaban benar 25% Answer is correct | 50% Jawaban benar 50% Answer is correct | 75% Jawaban benar 75% Answer is correct | 100% Jawaban benar dan lengkap 100% Answer is correct and complete |
|
|
|
|
12 |
|
Visualisasi data, dashboard dan story menggunakan tableau |
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS. - Memberi dan menerima umpan balik melalui diskusi dan tanya jawab. - Menjalankan praktikum |
- Jen Stirrup, Ruben Oliva Ramos(2017)
|
- Praktikum 5 - 3.00 %
- Quiz 5 - 3.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: CPMK 3 : Memahami prinsip-prinsip Computational Thinking (CT) untuk mempelajari data science, menganalisis permasalahan data science dengan framework CT serta mengekspresikan masalah bisnis sebagai masalah data Understand the principles of Computational Thinking (CT) to learn data science, analyze data science problems with the CT framework and express business problems as data problems |
KAD: Sub CPMK 12 : Menerapkan visualisasi data menggunkan Tableau Implement data visualization using Tableau (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Ketepatan jawaban
Accuracy of answers |
Praktikum 5 3.00 %
Quiz 5 3.00 %
|
0.00(Fail)
| 25.00(Pass)
| 50.00(Pass)
| 75.00(Pass)
| 100.00(Pass)
|
Jawaban praktikum dan kuis salah Practical and quiz answers are incorrect | 25% Jawaban praktikum dan kuis benar 25% Practical and quiz answers are correct | 50% Jawaban praktikum dan kuis benar 50% Practical and quiz answers are correct | 75% Jawaban praktikum dan kuis benar 75% Practical and quiz answers are correct | 100% Jawaban praktikum dan kuis benar dan lengkap 100% Practical and quiz answers are correct and complete |
|
|
|
|
13 |
|
Core analytics concept, table calculation, dan dashboard menggunakan google cloud |
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS. - Memberi dan menerima umpan balik melalui diskusi dan tanya jawab. - Menjalankan praktikum |
|
- Ujian Akhir Semester - 5.00 %
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: CPMK 3 : Memahami prinsip-prinsip Computational Thinking (CT) untuk mempelajari data science, menganalisis permasalahan data science dengan framework CT serta mengekspresikan masalah bisnis sebagai masalah data Understand the principles of Computational Thinking (CT) to learn data science, analyze data science problems with the CT framework and express business problems as data problems |
KAD: Sub CPMK 13 : Menerapkan visualisasi data menggunakan Google Looker Studio Implement data visualization using Google Looker Studio (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Ketepatan jawaban Accuracy of answers |
Ujian Akhir Semester 5.00 %
|
0.00(Fail)
| 25.00(Pass)
| 50.00(Pass)
| 75.00(Pass)
| 100.00(Pass)
|
Jawaban ujian salah Incorrect test answer | 25% Jawaban ujian benar 25% Answer for Examination test is correct | 50% Jawaban ujian benar 50% Answer for Examination test is correct | 75% Jawaban ujian benar 75% Answer for Examination test is correct | 100% Jawaban ujian benar dan lengkap 100% Answer for Examination test is correct and complete |
|
|
|
|
14 |
|
Presentasi proyek analitik data dasar |
|
150.00 |
- Memanfaatkan berbagai sumber belajar, termasuk LMS. - Memberi dan menerima umpan balik melalui diskusi dan tanya jawab |
|
|
|
CAPAIAN PEMBELAJARAN: Memiliki kemampuan dalam melakukan fungsi klasifikasi, klasterisasi, regresi, deteksi anomali, pemfilteran, aggregasi, pembelajaran aturan asosiasi, perangkuman, baik secara deskriptif maupun prediktif di dalam memahami masalah data secara tepat dengan memahami konsep, metode, teknik dan tahapan data mining serta visualisasi data sebagai pengetahuan. (CPL09 (KK.g)) Possess the ability to perform classification, clustering, regression, anomaly detection, filtering, aggregation, association rule learning, summarization, both descriptively and predictively, to accurately understand data problems by understanding the concepts, methods, techniques, and stages of data mining and data visualization as knowledge. (CPL09 (KK.g))
|
CPMK: CPMK 3 : Memahami prinsip-prinsip Computational Thinking (CT) untuk mempelajari data science, menganalisis permasalahan data science dengan framework CT serta mengekspresikan masalah bisnis sebagai masalah data Understand the principles of Computational Thinking (CT) to learn data science, analyze data science problems with the CT framework and express business problems as data problems |
KAD: Sub CPMK 14 : Menerapkan Proyek Analitik Data Dasar dan Presentasi Implement Basic Data Analytics Projects and Presentations (3,3) |
|
Daftar Kriteria Penilaian (Indikator) |
PI Description | PI Assessment Methods |
Ketepatan dalam menjelaskan proyek analitik dasar Accuracy in describing basic analytics projects |
Proyek 20.00 %
|
0.00(Fail)
| 25.00(Pass)
| 50.00(Pass)
| 75.00(Pass)
| 100.00(Pass)
|
Ketidaklengkapan bahan presentasi Incompleteness of presentation materials | 25% Kelengkapan bahan presentasi 25% Completeness of presentation materials | 50% Kelengkapan bahan presentasi 50% Completeness of presentation materials | 75% Kelengkapan bahan presentasi 75% Completeness of presentation materials | 100% Kelengkapan bahan materi dan pemahaman materi 100% Completeness of material and understanding of material |
|
|
|
|